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Abstract. Misconceptions still exist regarding the nature of the approximation behind the 
so-called WKBJ solutions to wave propagation problems, particularly when the second- 
order differential equation is not in normal form, and when the order of the equation is 
higher than two. Here we examine (i) necessary conditions via the differential equation for 
the validity of the additional phase memory terms, and their possible transformation into 
local factors, showing how these terms arise and when they are meaningful, and (ii) sufficient 
conditions briefly via the corresponding integral equations. Investigation (i) is based on two 
sets of inequalities, the first between the moduli of the approximate solutions of the 
corresponding first-order equations, and the second between the moduli of the exponentials 
of the integrals of the effective refractive indices. 

1. The concept of phase memory 

The ultimate goal of the theory of the WKBJ or phase-integral solutions of a (second- 
order) differential equation in the complex plane has been attained in the recent paper 
by Olver (1978). Many readers intent upon using these solutions in physical problems 
(such as the propagation of radio waves in an anisotropic ionosphere) may be daunted 
when faced with such an investigation on account of the complicated analysis necessary 
to justify the extension of the theory into the complex plane when several transition 
points are involved. A more popular account of how the WKBJ solutions may be 
extended around transition points in the complex plane has been given by Heading 
(1977). 

On the other hand, at the mathematical level used by many investigators in their 
application of these solutions, clarity is still needed regarding the forms of the 
approximate solutions in domains not containing transition points. This may appear 
surprising but the reason may be seen from the following assessment. 

For a second-order differential equation in normal form 

d2w/dz2+k2q2(z)w = 0, 

the WKBJ solutions for large k are well known to be 

w = q-”2 exp( *ik q dz), 

where k q dz  represents the phase memory, and q-”2 a local factor. An error analysis 
based on an equivalent integral equation reveals the nature of the approximation; terms 
of the form O(l/k) are associated with the WKBJ solutions and are uniformly valid 
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throughout restricted domains in the complex z plane; see Jeffreys (1962), Heading 
(1962). 

To omit the factor q-”* and to use only w = exp(iik J q dz)  is not correct, since the 
error analysis based on the integral equation can only be applied to the complete 
approximate solution. 

Often, the one second-order equation is written as two first-order equations and 
matrix techniques are used to transform them suitably so as to extract the approximate 
WKBJ solutions; see Heading (1962,1975). This method clearly shows the origin of the 
phase memory and the local factor and by the very form of the first-order equations 
(arising from a second-order equation in normal form), no other phase-memory term is 
possible. But the local factors arise from the neglect of other terms in the first-order 
equations and this process is usually taken for granted, regardless of whether the 
neglected terms are genuinely small compared with terms giving rise to the local factors, 
and this can lead to serious conceptual and mathematical mistakes. In their compre- 
hensive survey of the subject Berry and Mount (1972) are not concerned with the 
treatment of phase memory, because this only becomes important when equations 
other than normal second-order equations are investigated. Budden’s survey (1 97 5)  
mentions the subject only in a closing brief paragraph. 

Smith (1975) deals with the subject from the point of view of anisotropic ionospheric 
radio propagation. The appropriate WKBJ solutions of the four first-order equations are 
found to be 

wi = exp( -ik [ qi dz + k [ rii dz) 

by an argument based on the smallness of the remaining terms rI, (i # j ) ,  a criterion 
which, as will be pointed out generally, cannot be simultaneously correct for all four 
solutions. Generally speaking, the integral J rii dz cannot be manipulated so as to yield 
a local term, though part of it can; the remainder must be retained as an additional 
phase-memory. Conditions for the integrability of 5 Fil dz are examined in the paper. 

Budden and Smith (1976) continue the investigation of this additional phase 
memory as applied to various types of wave propagation in geophysics and atmospheric 
physics and find integrable cases when only local factors are produced. For second- 
order equations, they consider waves in an isotropic ionosphere, in an isotropic 
magnetic dielectric, in an optically active dielectric and atmospheric gravity waves. For 
higher-order equations, they consider electromagnetic waves in a cold anisotropic 
plasma, electro-acoustic waves in isotropic warm plasma, waves in an optically active 
medium, seismic waves with and without the effect of a Coriolis force and magneto- 
hydrodynamic waves. 

In the present paper, we are concerned with the origin of this term T I ,  in the 
approximate solutions, regardless of whether it can be wholly or partially integrated so 
as to introduce a local factor or to remain as an additional phase-memory term. 
Approximations are possible by taking a domain throughout which there are to be 
satisfied certain inequalities between terms in the differential equations. Approximate 
solutions are then derived when these small terms are neglected. Some investigators 
never pursue the analysis beyond this point. But further investigation is essential. If 
this further analysis is to be based solely on the differential equations, the approximate 
solutions must be used to examine the consistency of the assumed inequalities, for it 
may turn out that they cannot be valid when the approximate solutions are used. This 
consistency depends in turn on other inequalities (or equalities) between the moduli of 
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exp(j qi dz). This interlocking of inequalities provides a basis for deriving the. WKBJ 
solutions simply from the first-order equations and for deciding whether such solutions 
may or may not be taken in linear combinations. It is the author’s opinion that much 
spurious mathematics (sometimes nevertheless yielding correct results) could have 
been avoided by investigators realising the importance of this kind of approach which 
yields necessary but not sufficient conditions for the validity of the WKBJ solutions. 
Sufficiency is dealt with by means of equivalent integral equations in which the terms 
previously neglected are retained in the integrals involved; these equations are solved 
by an iterative process using successive substitution, and estimates of the magnitudes of 
successive terms are obtained, thereby yielding uniformly convergent series and 
establishing the O ( l / k )  error estimates. 

Our intention in this paper is to concentrate on the necessary conditions via the 
differential equations and to introduce a particular step in the analysis which dis- 
tinguishes a term that may be neglected from one that may not be, although both may be 
of the same order of magnitude. At the same time the integral equations are not 
overlooked since these provide the ultimate sufficiency behind the approximation 
process. 

2. The first-order equations 

We commence our investigation with a general second-order linear differential equa- 
tion not in normal form, 

d2w/dz2+2ku(z) dwldz + k2u(z)w = 0, 

where k is a large real parameter and u ( z )  and U(Z) suitable functions of z ;  they may 
also be functions of k with inverse powers of k allowed. In matrix form we write 

or 

W’ = Tw, 

say, where a prime denotes differentiation with respect to z .  
We introduce the change of variable w = Re where 

ql and q2 being the characteristic roots of T. The characteristic equation is 

q2+2kuq+k2v = O ,  

with roots 

q = k[-U * J ( u 2  - U)], 

which we shall write as k(-u &D1’2). Then 

f = Of - R-lR’f, 
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where 

and 

We shall call the elements of r = -R-’R’ coupling coefficients and those of rf coupling 
terms. 

The usual method of procedure is to solve the simultaneous equations (1) by 
neglecting some of the coupling terms, a process that should depend on the relative 
order of magnitude of the terms involved. The introduction of the concept of phase 
memory needs clarification when approximate solutions are sought, since claims are 
sometimes made that cannot be justified, and yet that seem to yield the expected results! 

Written explicitly, the simultaneous equations (1) are 

f i  = qlfl  + rllfl + rlzf2, f i  = q2f2 + rZ1fl + rZ2f2. ( 2 )  
Corresponding integral equations may be simply developed based on the integrating- 
factor method for first-order linear equations. One pair is 

while another pair is 

di)[Al 

di)[AZ 

the constants being determined by the boundary conditions of the problem. 

3. The first defective approximation 

The most naive approach has been to neglect all coupling terms I’C on the grounds that 
the principal terms Of on the right-hand side of (l), each with a factor k, are large 
compared with the coupling terms. This would give 

fi =Ai exp( 1 41 dz), ( 5 )  

suggesting that both solutions are independent (except at points where q1 = 42, namely 
when r is singular, at the coupling, reflection or transition points). The reason why this 
argument is so defective is because no uniform error bounds throughout particular 
specified domains can be arranged to be associated with such solutions (2). It is 
equivalent to suggesting that good approximate asymptotic expressions for the Airy 
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integral and its companion function can have the forms e x p ( * f ~ ~ / ~ )  rather than 
2-114 e x p ( * $ ~ ~ ’ ~ ) .  

The iterative method of solution is commenced by substituting ( 5 )  into the first 
equation (4), yielding a correction term containing two integrals. The first is obviously 
O( l), while the second may be manipulated by integration by parts to yield an estimate 
O(l /k )  uniformly with respect to z .  Overall therefore we see the futility even at this 
stage of the iterative process of suggesting that ( 5 )  is in any sense an approximate 
solution of equation (l), although the neglect of all the coupling terms may appear 
attractive on the surface. 

4. The second defective approximation 

This is usually found by retaining the two diagonal coupling terms, but neglecting the 
non-diagonal coupling terms, giving 

again suggesting that these are always independent. Using ql,’ = k ( - u  fD1/’) we have 

f l = A ~ D - ” ~ e x p [ l  (k(-u+D1”)+&) dz], 

In these approximations, U-*/‘ is known as the local factor, while 5 [ k ( - u  *D1/’) * 
u’/2D1’’] dz are known as phase-memory terms, showing that the change of phase is 
cumulative as a wave-like solution propagates through the medium. 

It must be admitted that such a method for finding these approximations is quite 
untenable, whether for second- or for fourth-order equations, even though sometimes 
they are perfectly in order. If subsequent numerical investigations show that further 
results derived from such approximations are in good agreement with exact solutions, 
this still does not justify the method of approximation since no examination is made of 
the errors involved. Even without this examination, the argument is fallacious! When 
the approximations are introduced properly into the differential equations, quite a 
different understanding is gained of the origin of these local and phase-memory terms, 
and also of the independence or otherwise of the proposed solutions (6). 

In the following section, we shall use an argument based on differential equations 
only to derive necessary conditions for the validity or otherwise of the proposed 
solutions (6). First, however, by means of integral equations (4), we examine the 
solutions along an anti-Stokes line, defined as follows. 

With a suitable lower limit for the phase-memory terms, a line in the complex plane 
along which 

Re  q l d z = R e  qzdz  I I 
is known as an anti-Stokes line. Along such a line, exp(5 q1 dz)  and exp(5 q2 dz)  are of 
equal modulus. At points not on such lines, when k is large one of these exponentials is 
large in magnitude and one is small. 
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When possible, consider integration through a domain in which the moduli of 

rllfl, r12f2, r21fl, rZ2f2 ( 7 )  
are all of the same order of magnitude with respect to k. Under these circumstances in 
the differential equations none of the coupling terms can be neglected in comparison 
with any other, unlike what is often asserted. Although no distinction can be drawn 
between diagonal and non-diagonal coupling terms, yet in the integral equations (4) the 
non-diagonal coupling terms are relegated to the second integrals. 

The standard iterative process is commenced by substituting the two exponentials 
(6)  into (4). The second terms are integrated by parts, after which it is deduced directly 
that the terms are of the form O ( l / k )  uniformly with respect to t as k + W .  The process 
is repeated ultimately yielding convergent Liouville-Neumann expansions (see Jeff reys 
1962). This gives the impression that the non-diagonal coupling terms in the differen- 
tial equations have been neglected in comparison with the diagonal coupling terms of 
the same order of magnitude. ‘This illusory success in this case in no way assures similar 
success elsewhere than along an anti-Stokes line. 

5. Valid approximations for necessary conditions 

From the point of view of the differential equations (2), any neglect of a coupling term is 
dictated by the order of magnitude of the coupling term when compared with the others 
and also with the principal terms qifi, and such order of magnitude differences are 
maintained uniformly through some domain of the complex z plane. When any 
assumption is made that permits the neglect of a particular coupling terms then the 
ensuing approximate solutions must be used to test the consistency of the assumption 
either analytically or numerically. In this connection it is wrong, as is often done, to 
consider merely the magnitude of the coupling coefficients I’; the complete coupling 
terms rf must be examined. 

A legitimate procedure for the neglect of a coupling term is first to introduce into 
equations (2) a change of dependent variable 

;ay, giving 

g; = qlgl  + r lzg2,  g; = q2g2 + r21gl + (rZ2 - rll)g2. (8) 

Both the diagonal coupling terms cannot be removed by this means, unless r l l  = rZ2 
when the original differential equation is normal in form. 

We need not now suppose any inequality between the coupling terms. Since k is a 
:actor of 41 but not of r12, it is now legitimate to consider the proposed inequality 
:hroughout a domain 

iqlgli >> irI2g2i, (9) 

:nabling us to write approximately 8’1 = 4181, with solution 
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and 

identical with (6). We now substitute this into (8) without any further approximation 
being introduced, yielding a simple first-order linear equation for g2 with solution 

If the values of 41 and q2 satisfy the condition for integration along an anti-Stokes 
line, and if in gz the first term is of the form O(l/k),  then 

to this order of approximation. The whole process is finally seen to be self-consistent, 
since along an anti-Stokes line the four quantities (7) are all of the same order of 
magnitude with respect to k, forming with (9) necessary conditions for the validity of the 
approximation. In other words, these results for gl and g2 are those that would be 
obtained by the neglect of the non-diagonal coupling terms in (2), but a legitimate use of 
inequalities has been employed to demonstrate the necessary conditions. Certainly the 
diagonal coupling terms must be used, producing both local terms and an addition to the 
phase-memory terms beyond 5 q1 dz and J 4 2  dz. Sufficiency must be considered by 
means of the integral equations as dealt with in paragraph 4. 

To this order of accuracy, 

(i,) = w = Rf 

showing to this order of accuracy (i) that a linear combination of the two approximate 
solutions is permitted along an anti-Stokes line, and (ii) that when w is differentiated 
only the principal terms and not the diagonal coupling coefficients in the integrals must 
be differentiated. 

Consider now how the differential equations can be handled so as to yield necessary 
conditions when a domain is selected not involving an anti-Stokes line in which l f l l  >> If2/. 
The coupling coefficients are still of the same order of magnitude but the coupling terms 
will satisfy the inequalities 

so we may write equations (2) approximately as 
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Note that both non-diagonal coupling terms cannot be neglected at the same time, 
unlike the previous case when not even one coupling term could be neglected initially 
until a transformation was made. 

The solution for fi has the same apparent form as previously, and f2 will be 

If as usual the first term in f 2  is of the form f lO(l /  k )  uniformly throughout the domain, 
two cases arise. 

(i) If 

for large k, then 

f z  = f iO( l /k) ,  

and inequalities (1 1) are satisfied; this is the dominant solution throughout the domain. 
(ii) If 

for large k, then a subdominant solution is produced provided A 2  = 0, yielding again 

f2 = f 1 W / k ) ,  

with inequalities (1 1) again satisfied. 
It will be noticed that exp(j q2 d r )  enters neither solution, except on an anti-Stokes 

line and when, of course, the roles of 41 and 4 2  are reversed in some other domain. Only 
an argument of this kind will indicate conclusively necessary conditions when and why 
some coupling terms can be neglected. Linear combinations of the two exponential 
forms are not allowed. The necessary inequalities are supplemented by considerations 
based on the integral equations in which the path of integration must be chosen in 
keeping with the texts, for example, by Jeffreys (1962) and Heading (1962), so as to 
preserve uniformity in the errors associated with the first approximations. 

6. Fourth-order equations 

Let the four first-order coupled equations be written in the form 
4 

f: = qifi + C rifj, 
j = l  

where k occurs as a factor in the qi but not in the coupling coefficients Tip Whether any 
of the coupling terms can be neglected throughout a specified domain depends on the 
relative order of magnitude of the sixteen terms rid, and generally more possibilities 
exist than in the second-order case. 

(i) If I f l [  >> Ifi[, If31, I f41  throughout the domain, we can approximate the equations as 

f; = qifi + Ti tfl, 
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whose solutions involve constants A l ,  AS, A3, A4 respectively. These solutions are 
usually 

fl = A 1 exp( (41 + r11) dz) , 
f i  =f1O(llk), j = 2 ,3 ,4 ,  

a dominant solution (or possessing a fourth level of dominancy) when 

lexp(J q,dz)I>>lexp(lq,dz)l, i = 2 , 3 , 4 .  

These levels of dominancy have been illustrated for particular equations by various 
diagrams (Heading 1957). The appropriate error analysis must be based on the 
corresponding integral equations. 

(ii) If 

the same forms (1 2) persist satisfying the basic inequalities provided the arbitrary 
constant A2 in f 2  is appropriately placed equal to zero. Solution (12) then presents the 
third level of dominancy. 

(iii) If 

the same forms (12) persist if arbitrary constants A2 and A3 are placed equal to zero in 
f 2  and f3 respectively, giving a solution presenting a second level of dominancy. 

(iv) If 

forms (12) persist provided the constants A2, A 3  and A 4  vanish; this is now a 
subdominant solution (or first level of dominancy). In all cases the basic inequalities 
between fi, f 2 ,  f3, f4 are satisfied. In all four cases, the analysis refers to the necessary 
conditions via the differential equations. If the inequalities are not satisfied, the 
solutions in the stated forms do not exist. Sufficiency,analysis via the integral equations 
is similar to our previous investigation, but is more complicated to write out. 

If, on the other hand, f1 and f 2  satisfy neither l f l l  >> If21 nor If11 << If21, consider a 
domain in which 

(13) Ifil, If21 >> If31, Ifd 
in which case we have the approximate equations 

f: = qifi + riifi + rizf2. 

As before, introduce f = exp(j rll dz)g, giving, after the legitimate neglect of some 
coupling terms, 

g i  = qigi, 

g; = q3g3 + r31gi + r32g2, 

g; = q2g2 + r21gl + (r22 - rll)g2, 

g; = q4g4 + r41gl + r42g2. 
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We obtain the following solutions: 

Different cases arise depending on the relative dominancy of fl and f2 compared with 
other exponential terms. 

(i) When integration takes place along an anti-Stokes line for which 

inequalities (13) are consistently satisfied. Dominancy levels 3 and 4 are involved for 
the fi. 

(ii) If 

the same set of solutions is valid provided the arbitrary constant A 3  that would appear in 
g3 is suitably placed equal to zero. Dominancy levels 2 and 3 are involved, with level 4 
entirely cut out. 

(iii) If 

the same set of solutions is valid provided the arbitrary constants A 3  and A4 are suitably 
placed equal to zero. Dominancy levels 1 and 2 are entirely cut out, but 3 and 4 are 
involved on equal terms. 

Our overall investigation has shown briefly from the differential equations: (i) 
necessary conditions when coupling terms can be neglected; (ii) that such neglect 
depends on the complete coupling terms and not merely on the coupling coefficients; 
(iii) why a change in the dependent variable should sometimes be made; (iv) why and 
how inequalities must be consistently satisfied between the f i  in a specified domain; (v) 
why not all the 4i appear in the four fi for any particular solution; (vi) why some 
arbitrary constants must vanish, depending on the relative magnitudes of the exponen- 
tials of the integrals of the 4,; (vii) why no lower dominancy levels can appear in any 
solution; (viii) how the theory can be extended to equations of higher order; (ix) how 
contributions to the phase-memory terms must arise from the diagonal coupling 
coefficients which cannot be neglected. Any investigation of a specific problem must 
take all these points into consideration, backed by an analytical or numerical examina- 
tion of the inequalities. Sufficiency analysis must be based on the integral equations, 
though this is often overlooked in physical problems. 
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